Errata edition 1.2¶
Page 87, text: Figure 3.5B … The bias voltage V1 compensates for this voltage. should be:
The bias voltage V2 compensates for this voltage.
Page 135, equation 4.145, page 137, equations 4.155, 4.156 and 4.159, units of \(\beta^{\prime}_{sq}\) should be: \(\mathrm{[AV^{-2}]}\).
Page 145, equation (4.196) with the text below should be:
\[f_{\ell}=\mathrm{KF} \frac{\pi}{3kTn\Gamma} f_T\]With \(n\Gamma\approx 1\) this simplifies to :math:`f_{ell}=253times 10^{18}textsc{kf} f_T.
Equation 10.6 should be:
\[\lim_{H\rightarrow\infty}\left(\frac{E_o}{E_i}\right)=\frac{1}{k}\]Figure 10.6 should be:
Figure 10.7 should be:
Section 11.4.6 should be:
At low frequencies, zeros may cause the loop gain to drop below its midband value. In such cases the servo function obtains a high-pass character with a high-pass cut-off at \(\omega_{\ell}\). This cut-off frequency can be found in a similar way as the low-pass cut-off frequency \(\omega_{h}.\) We now only account for the \(p\) zeros and the \(q\) poles with frequencies smaller than \(\omega_{\ell}\) and use the asymptotic approximation according to (11.50) with \(p>q\). In this way we obtain:
\[\omega_{\ell}\approx\sqrt[p-q]{\left\vert \frac{b_{\ell}}{a_{k}}\frac{{\displaystyle\prod\limits_{i=k+1}^{p}}% p_{i}}{{\displaystyle\prod\limits_{j=\ell+1}^{q}}z_{j}}\right\vert }.\]Equation 12.5 should be:
\[\omega_{h}=\left\vert a_{n}\right\vert ^{-\frac{1}{n}}\]Equation 12.9 should be:
\[\omega_{\ell}=\left\vert b_{k}\right\vert ^{-\frac{1}{k}}\]Page 418: The text below equation (12.38) should be:
From this, we see that a third-order system can be given an MFM characteristic with one negative real phantom zero if
Equation 12.62 should be:
\[\omega_{h}=\sqrt[3]{\left\vert \frac{1}{a_{3}}\right\vert }\]Page 428: The SLiCAP scripts that begins at line 20, should begin with line 19:
result = pzLoopgain.results
Page 459: The text below Figure 12.74 should be:
A phantom zero at \(s=-\frac{1}{R_c C_c}\) brings the two poles of the servo function into MFM positions.
Exercise 12.2: Change the value of the DC loop gain to \(-10^4\).
Figure 18.27 should be:
Equation 18.90 should be:
\[\begin{split}\mathcal{R}=\mathcal{I}^{T}\mathbf{G}^{-1}\mathcal{I}=\left( \begin{array} [c]{ccc}% 0 & 1 & 0\\ 0 & 0 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{array} \right) ^{T}\left( \begin{array} [c]{cccc}% \frac{1}{R_{1}}+\frac{1}{R_{2}} & -\frac{1}{R_{1}} & 0 & 0\\ -\frac{1}{R_{1}} & \frac{1}{R_{1}} & 0 & 1\\ 0 & 0 & 0 & -1\\ 0 & 1 & -1 & 0 \end{array} \right) ^{-1}\left( \begin{array} [c]{ccc}% 0 & 1 & 0\\ 0 & 0 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{array} \right)\end{split}\]Equation 18.91 should be:
\[\begin{split}\mathcal{R}=\left( \begin{array} [c]{ccc}% R_{1}+R_{2} & R_{2} & -1\\ R_{2} & R_{2} & 0\\ -1 & 0 & 0 \end{array} \right) . \label{eq-Rmatrix}\end{split}\]Equation 18.92 should be:
\[\begin{split}\mathbf{T=}\mathcal{RC}\mathbf{=}\left( \begin{array} [c]{ccc}% R_{1}+R_{2} & R_{2} & -1\\ R_{2} & R_{2} & 0\\ -1 & 0 & 0 \end{array} \right) \left( \begin{array} [c]{ccc}% C_{1} & 0 & 0\\ 0 & C_{2} & 0\\ 0 & 0 & -L_{1}% \end{array} \right)\end{split}\]